Modeling quantum effects in photosynthetic charge separation

نویسندگان

  • Arend G. Dijkstra
  • Florian Mintert
چکیده

Nature used light as a source of energy. Organisms like plants and bacteria rely on photosynthesis to power their activity. Light is absorbed by pigment molecules, which are part of large protein complexes. The initially absorbed photon creates an energy packet, which moves through the complex towards a reaction center, where charge separation takes place [1]. Over the past ten years, the role of quantum effects in the energy transport mechanism, and the competing role of vibrational motion, have been studied, stimulated by new experimental developments [2].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum Effects in Photosynthesis

In photosynthesis, the energy of the Sun is absorbed by the light-harvesting antenna and transferred to the reaction center (RC) within several tens of picoseconds. In the RC the solar energy is converted into electrochemical energy by means of a trans-membrane charge separation. Photosynthetic purple bacteria employ a single reaction center. In contrast, in photosynthesis of plants, algae and ...

متن کامل

A multi-pathway model for photosynthetic reaction center.

Charge separation occurs in a pair of tightly coupled chlorophylls at the heart of photosynthetic reaction centers of both plants and bacteria. Recently it has been shown that quantum coherence can, in principle, enhance the efficiency of a solar cell, working like a quantum heat engine. Here, we propose a biological quantum heat engine (BQHE) motivated by Photosystem II reaction center (PSII R...

متن کامل

Artificial Photosynthetic Reaction Center Exhibiting Acid-Responsive Regulation of Photoinduced Charge Separation.

Nonphotochemical quenching (NPQ) is a photoprotective regulatory mechanism employed by many photosynthetic organisms to dynamically modulate energy flow within the photosynthetic apparatus in response to fluctuating light conditions. Activated by decreases in lumen pH produced during periods of high photon flux, NPQ induces rapid thermal dissipation of excess excitation energy. As a result, the...

متن کامل

Modeling charge transfer in the photosynthetic reaction center.

In this work, we present a model to elucidate the unidirectionality of the primary charge-separation process in the bacterial reaction centers. We have used a model of three sites/molecules with electron transfer beginning at site 1 with an option to proceed to site 2 or site 3. We used a stochastic model with arbitrary correlation functions. We get the quantum yields of electron escape via the...

متن کامل

Quantum Chemical Modeling of N-(2-benzoylphenyl)oxalamate: Geometry Optimization, NMR, FMO, MEP and NBO Analysis Based on DFT Calculations

In the present work, the quantum theoretical calculations of the molecular structure of the (N-(2-benzoylphenyl) oxalamate has been investigated and are evaluated using Density Functional Theory (DFT). The geometry of the title compound was optimized by B3LYP method with 6-311+G(d) basis set. The theoretical 1H and 13C NMR chemical shift (GIAO method) values of the title compound are calculated...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016